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1 Introduction

The increasing frequency and severity of natural disasters driven by climate change have ex-
panded the scope of private risk-sharing beyond traditional property and casualty insurance.
Additionally, the rise of cyber threats due to global networking and digitalization has further
broadened this scope, challenging the conventional policyholder-insurer relationship. Today,
insurance-linked securities such as catastrophe bonds (cat bonds) and cyber bonds actively
integrate capital markets into the risk-sharing process. (Re)insurers or brokers initially un-
derwrite tail risks from policyholders. Subsequently, they transfer these risks to the capital
markets, effectively becoming bondholders to seek protection through the capital markets
in case of a triggering event. These risks are largely uncorrelated with capital market risks,
making them attractive for investment due to their high returns and diversification potential
(Cummins and Weiss, 2009). However, extreme losses push the limits of the capital market
and underscore the necessity for alternative solutions, such as government involvement, as
illustrated by the Covid-19 pandemic (e.g., Gründl et al., 2021; Braun et al., 2023). With
the rise of climate and cyber risks, along with the recent Covid-19 pandemic, the presence of
jump risks and their correlation with macroeconomic fundamentals has become increasingly
important. Understanding and replicating the returns of cat bonds – a key instrument for
protection against these risks and which are almost entirely composed of uncorrelated tail
risks – remains an unsolved puzzle. Traditional asset pricing models, including factor models
and consumption-based models, typically explain only a small portion of the risk premium
(e.g., Braun et al., 2019a). Moreover, the availability of high-frequency natural catastrophe
risk data is limited, and long-term data is scarce, especially for relatively new markets like
cyber bonds. In the case of pandemics, data is virtually non-existent. The lack of explanatory
power in traditional asset pricing models is not unique to the cat bond market. For instance,
corporate bond markets, where downside risks are known pricing factors, also reveal the
limitations of traditional pricing models (e.g., Bai et al., 2019; Dickerson et al., 2023).

The inability of traditional models to explain the returns on cat bonds poses an issue
for effective pricing and risk management in a rapidly growing risk transfer market. This
paper addresses this gap by introducing a comprehensive model for pricing risk transfer
instruments, focusing on cat bonds and cyber bonds. Therefore, the study bridges two
key domains: actuarial science, particularly in catastrophe risk modeling and pricing, and
financial economics, with an emphasis on tail risk transfer mechanisms and capital market
integration through instruments like cat bonds. By integrating this dual perspective, the
model leverages option pricing frameworks to value different risk categories, demonstrating
its applicability to capital market instruments like cat bonds or cyber bonds. This choice
is particularly suitable as options are themselves hedging instruments. Unlike traditional
insurance models, this approach incorporates market environment, correlations, jump risks,
and higher-order factors, creating a unified framework for pricing various risks.

In insurance, catastrophic risks are often modeled using compounded Poisson processes
(e.g., Bowers et al., 1986; Lee and Yu, 2002; Ma and Ma, 2013), as are in finance, asset,
and option pricing models that incorporate jump risks using these widely used processes
(e.g., Bates, 1996; Andersen et al., 2002; Kou, 2002; Eraker, 2004). Additionally, frictional
costs are recognized as a contributing factor to high catastrophe markups (e.g., Zanjani,
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2002) and explain return variations in financial markets (e.g., Luttmer, 1996; De Roon and
Szymanowska, 2012; Ai and Bhandari, 2021). Grounded in the insurance model by Doherty
and Garven (1986), which includes shareholders and policyholders and accounts for frictional
costs, this paper also draws from option pricing models, such as the one by Margrabe (1978),
which focuses on the exchange dynamics of two risky assets, and the model by Merton (1976),
which incorporates jump risks. The closed-form solution provided by Cheang and Chiarella
(2011) effectively integrates these models. The stochastic structure relies on a compounded
Poisson jump process, consisting of a Poisson process for jump occurrences, with a jump size
component. At the heart of the model is the measure transformation of the jump process
from P to Q, rooted in actuarial principles of probability distortion, as proposed by Esscher
(1932), Gerber and Shiu (1994), and Wang (2000). In line with the financial literature, this
distortion reflects investors’ fear of tail risks (Bollerslev and Todorov, 2011) or an extreme
aversion to significant losses and negative skewness (Pan, 2002). While the distortion is
unique in simpler market settings, it becomes complex in incomplete markets, highlighting
the challenge of identifying a single Q measure.

The paper demonstrates the practical application of the new methodology using real loss
estimates across different risk categories, such as classical P&C risks and hurricane risks,
calibrating model parameters with market data. Applying this approach to the cat bond
market enables a focused examination of how capital markets perceive tail risk, given that
cat bonds largely consist of uncorrelated tail risk. A core element of the analysis is the use of
unique cyber data, providing the closest real-world calibration to date. The findings reveal
that, despite market incompleteness and infinite choices for Q, the probability distortion
toward tail risks is unique. Gao et al. (2019) describe this as tail risk concerns, reflecting
investors’ subjective ex-ante beliefs, a behavior predicted by prospect theory (Barberis, 2013).
As shown by Barberis and Huang (2008), prospect theory anticipates that skewness in a
security’s return distribution – even idiosyncratic skewness unrelated to the market, as in the
case of cat bonds – will be priced, a feature not captured by traditional models. This paper’s
measure thus quantifies a distinctive pricing structure that extends beyond conventional
models, serving as a unique metric of risk aversion within the framework of prospect theory.

The main contribution of this paper is twofold: First, it introduces a comprehensive
model for pricing risk transfer instruments across insurance and capital markets, adding
a new dimension to risk pricing theory. For non-jump risks, the approach incorporates the
market environment and higher-order factors typically absent from classical insurance pricing
models. For jump risks, particularly those transferred to the capital market, this paper is
the first to price these instruments. The analysis has several key advantages: (1) The use
of unique industrial cyber data enables a precise, real-world examination of pricing in the
cyber bond market. (2) The current homogeneous market presents a rare opportunity to
determine the tail risk parameter using a single dataset – an opportunity that may diminish
as bond structures diversify. (3) By focusing exclusively on bonds with pure tail risk, the
analysis avoids interference from other factors that could influence returns. Second, the
paper demonstrates the existence of a unique Q for tail risks in incomplete markets rooted
in established behavioral theories. The initial findings suggest that returns are composed
of three main components: frictional costs, a traditional beta risk premium, and tail risk
premium based on prospect theory under Q. This aversion quantification via the mass
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transformation in the jump can be applied to various markets, including the S&P 500 index
and options markets.

These findings are important for both investors and policymakers as they provide a deeper
understanding of tail risk pricing and its implications in markets exposed to extreme events.
For investors, the model offers a robust framework to assess the risk-return dynamics of
high-yield, low-correlation instruments like cat bonds and cyber bonds, allowing for more
informed investment decisions that align with their risk tolerance and diversification goals.
For policymakers, this research shows how extreme risks are transferred and priced in capital
markets, helping to inform regulatory strategies and public-private partnerships aimed at
bolstering market resilience. By bridging insights from both finance and insurance, this study
supports a more integrated approach to managing and pricing emerging risks, supporting
stability in the face of growing climate, cyber, and pandemic-related threats. For researchers,
the framework offers a foundation for further studies in risk transfer pricing and offers a new
understanding of capital market returns.

This paper extends the literature on catastrophe pricing in insurance, as well as tail
risk pricing and investor behavior in finance. Zanjani (2002) highlights the limitations of
traditional asset pricing models in measuring catastrophic markups in insurance pricing,
asserting that a significant portion of these markups stems from frictional costs and high
capital requirements – an assumption that remains valid today. Similarly, Lane and Mahul
(2008) emphasize that factors such as the capital market cycle and the transaction’s risk
profile play important roles in pricing, with market diversification also being factored in.
While these elements contribute to the overall explanation, they still can explain substantial
parts of risk pricing. The most closely related cat bond pricing models to this paper can be
traced back to those developed by Lee and Yu (2002) and Ma and Ma (2013), which utilize
contingent claim models based on compounded Poisson processes. However, these models
differ from the approach presented in this paper in three significant ways: First, they focus
exclusively on cat bonds without addressing the pricing of diverse risks. Second, they do not
offer a closed-form solution. Third, and most critically, they follow the Merton (1976) model,
incorporating unpriced risk, which limits their ability to explain observed market prices. In
financial markets, jump risks are critical for pricing in high-volatility environments, such
as oil and electricity markets, as well as during stock market crashes (e.g., Eraker et al.,
2003; Caldana and Fusai, 2013). Research on tail risks and risk premiums is extensive; for
instance, Harvey and Siddique (2000), Bollerslev and Todorov (2011), and Kelly and Jiang
(2014) demonstrate that a significant portion of observed risk premiums compensates for rare
events. Andersen et al. (2020) show that compensation for negative jump risk is a primary
driver of premiums in international options markets. Furthermore, Ai and Bhandari (2021)
illustrate that exposure to downside tail risk results in quantitatively large and volatile risk
premiums. As these returns cannot be explained by classical asset pricing models, the works
of Barberis and Huang (2008) and Barberis et al. (2021) link these tail returns to prospect
theory, which also forms the theoretical foundation of this paper.

This paper is structured as follows. Section 2 introduces the model, defines its boundaries,
and describes its connection to existing pricing models. Section 3 demonstrates the market
application. Section 4 shows the real-word calibration of Q. Section 5 discusses the results
and limitations. Section 6 concludes.
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2 Model

2.1 Risk Categories

To determine which risks adhere to the traditional policyholder-(re)insurance framework and
at what point capital market involvement or government backstops are required, it is essential
to categorize them. This paper defines four risk categories based on the framework proposed
by Cummins (2006) and further specified by Braun et al. (2023), assigning each a mathemat-
ical component. It is important to note that these categories are not mutually exclusive. For
instance, cyber risk may be managed through traditional (re)insurance, transferred to the
capital markets, and involve discussions of government backstops, depending on the severity
(e.g., Kasper et al., 2024).

The first category, called locally insurable risk, pertains to independent risks character-
ized by moderate standard deviations per risk and a substantial number of policies, such as
the US market for personal automobile insurance. Local insurers can effectively cover these
losses. The second category is globally insurable risk, which encompasses risks that are lo-
cally dependent but globally independent, such as tornadoes in the American Midwest versus
Australia. Local insurers may lack the capacity to cover such losses, but global reinsurers
can. Consequently, these risks are diversifiable on a global scale through reinsurance. Lo-
cally insurable risks follow a straightforward framework based on the law of large numbers,
assuming independence of losses within a loss portfolio. However, this independence does
not hold when analyzing globally insurable risks from a local perspective. On a global scale,
these risks exhibit no interdependence, allowing the creation of a loss portfolio of independent
losses. Thus, while there may be variations in the sizes of loss portfolios, local and global
insurable risks are mathematically comparable and can be modeled using right-skewed and
independent random variables (e.g., Eling, 2012). The third category is globally diversifiable
risk, referring to risks with low frequency and high severity. A recent example would be the
CrowdStrike outage or Hurricane Milton. The capacity of insurance and reinsurance com-
panies may prove insufficient to cover such events, but these risks can be globally diversified
through capital markets. The last category, called globally undiversifiable risk, describes risks
of such severity that they may resist global diversification, even through capital markets, for
example, the Covid-19 pandemic. While global securities markets might absorb a fraction of
such a loss, complete diversification of the full loss is unlikely, and government aid is likely
needed. Globally diversifiable and globally undiversifiable risks share characteristics of low
frequency and high severity, with heavy tail events significantly influencing these risk pro-
files. They follow a structure of jump processes, such as a compounded Poisson process (e.g.,
Merton, 1976), which is a common assumption in the actuarial literature (e.g., Bowers et al.,
1986; Lee and Yu, 2002; Jaimungal and Wang, 2006). A key distinction lies in the impact of
globally undiversifiable risks, which can directly influence macroeconomic fundamentals and
trigger worldwide economic shocks, as seen with the Covid-19 pandemic (e.g., Gründl et al.,
2021; Braun et al., 2023). Mathematically, globally diversifiable risks are those with jumps
and jump sizes uncorrelated to the capital market or, more broadly, the global economy.
In contrast, globally undiversifiable risks involve a joint jump process with correlated jump
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sizes.1

2.2 Shareholder and Policyholder

Inspired by Doherty and Garven (1986), a single-period model is considered. In t = 0
shareholders contribute equity S0 and policyholders pay premiums P to cover the stochastic
loss L̄. The shareholders’ opening cash flow is:

Y0 = S0 + P,

where the cash flow is invested at a risky rate r̄. The terminal cash flow is:

Ȳ1 = (1 + r̄)
(
S0 + P

)
.

At the end of the period, the policyholders claim L̄ ≥ 0, and the government (or other
organizations such as supervisory authorities) claims frictional cost of capital T̄1 ≥ 0. The
policyholders receive the payment:

H̄1 = min(L̄, Ȳ1) = Ȳ1 −max(Ȳ1 − L̄, 0),

and the additional frictional cost of capital are:

T̄1 = max(τ(Ȳ1 − L̄), 0),

where τ is the rate for the frictional costs. This model, therefore, differs significantly from
the underlying concept of Doherty and Garven (1986). While in their model τ represents
the tax rate on income and is dependent on the premium, here τ encompasses costs related
to agency, supervision, liquidity and other expenses (Froot and Stein, 1998, Zanjani, 2002).
The approach followed here aligns with the logic of Zanjani (2002), who identified these costs
as a key factor driving (catastrophic) insurance prices.

Both claims exhibit cash flows analogous to a European call option,2 so the present values
are:

H0 = V (Ȳ1)− C(Ȳ1; L̄),

T0 = τC(Ȳ1; L̄),

where V (·) is a present valuation operator and C(A;B) is the current market value of a
European call option with a terminal value A and exercise price B.

1Despite the economic coherence and comprehensiveness of these categories, which encompass all main
private and public risk bearers, it is essential to address the underlying mathematical nuances. Cummins
falls short in today’s market environment, particularly for the last two categories. Cummins defines the
last two categories of catastrophes as events that violate the principal insurability condition and may be
globally diversifiable through capital markets if other conditions are satisfied. However, he does not specify
mathematical concepts for these categories, unlike the first two.

2The cash flow of a European call option is CFcall = max(A − B, 0) with terminal value A and exercise
price B.
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The present market value of the shareholders’ return on equity, Ve, is the difference
between the market value of the portfolio, V (Ȳ1), on the one side, and the present value of
the policyholders’ claims and the present value of the frictional costs on the other side:

Ve = V (Ȳ1)−H0 − T0 = C(Ȳ1; L̄)− τC(Ȳ1; L̄).

In summary, shareholders hold a long position in a call option on the pre-frictional terminal
value of the asset portfolio and a short position in a call option on the frictional costs of that
portfolio.

Risk transfer prices are determined to yield a fair return to shareholders, achieved when
the current market value of the equity claim equals the initial investment. As Ȳ1 and Y0 are
functions contingent on P , the objective is to identify the premium P ∗ that satisfies:

Ve = C(Ȳ1(P
∗); L̄)− τC(Ȳ1(P

∗); L̄) = S0. (1)

Calculating P ∗ necessitates employing a suitable option-pricing framework. Given the stochas-
tic nature of the exercise price, conventional models like Black and Scholes (1973) are imprac-
tical. Doherty and Garven (1986) establish pricing relationships within the discrete-time,
risk-neutral-valuation framework of Rubinstein (1976), focusing on two special cases with
(log-)normally distributed stochastic components.3 The option pricing model used in this
study is rooted in the work from Merton (1976) and Margrabe (1978), accounting for jump
risks. Therefore, the model accounts for tail risks, which are becoming increasingly impor-
tant in a globally expanding world with more severe climate and cyber risks. The model
presented in this section will be referred to as the OM (option model) throughout the rest of
the paper.

Note, globally diversifiable risk and globally undiversifiable risk refers to the type of risk
that is transferred to the capital market due to the amount of capital required which cannot
be adequately provided by (re)insurers alone. This transfer of risk to the capital market
typically involves the issuance of a cat bond. Shareholders of the bond pay a principal
amount S0 to a trust account at time t = 0. In return, at time t = 1, they receive the
risk-free rate rf earned from the trust account, a coupon payment C, and the principal, and
need to pay the incurred losses (and any additional expenses). Therefore, the terminal cash
flow for the shareholder is given by:

Ȳ1 = (1 + rf )S0 + C,

whereby H̄1 and T̄1 remain the same. To ensure that the initial cash flow for shareholders
remains consistent throughout the model proposed here, the initial cash flow is:

Y0 = S0 +
C

1 + ω
.

Here, ω represents a risk-adjusted discount rate, and P = C
1+ω

denotes the present value
premium paid by the policyholder (Braun et al., 2023).

3Distribution assumptions like the normal distribution prove inadequate, as highlighted by Eling (2012).
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2.3 Pricing the Option

Consider tradable assets X1 and X2 under a probability measure P. Extending the option
price formula from Black and Scholes (1973), Margrabe (1978) formulated a model allowing
the exchange of two risky assets. It is assumed that all returns come from capital gains and
that no dividends are distributed.4 The dynamics for each asset are expressed as:

dXi

Xi

= µidt+ σidWi,t i ∈ {1, 2},

where µi is the instantaneous expected return per unit time, σi is the instantaneous volatility
per unit time and both assets follow a Brownian motion dWi,t with correlation ρ. This setting
has the closed-form solution:

C(X1, X2) = X1Φ(d1)−X2Φ(d2),

with d1 =
ln(X1

X2
) + 1

2
σ2(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

T − t represents the difference between the exercise period and the present period, Φ(·) is
the cumulative standard normal density function, and σ2 = σ2

1 − 2σ1σ2ρ+ σ2
2.

5

Globally diversifiable and globally undiversifiable risks are characterized by low frequency
and high severity events that fall beyond the scope of Margrabe (1978). The emergence of
globally undiversifiable risk is inherently tied to economic fundamentals, indicating that not
only does the loss portfolio but also the asset side exhibit a correlated downside risk. Modeling
tail risk involves incorporating jump processes, aligning with the conceptual framework estab-
lished in Merton (1976). Unlike Margrabe, Merton’s model does not consider the exchange
of two risky assets but follows the methodology of Black and Scholes (1973). Consequently,
a synthesis of both approaches becomes essential in this context.

Let Nt be a Poisson process with a constant arrival rate of jumps λ, shared by both assets.
The bivariate process Y = (Y1, Y2)

T represents the jump sizes, taking values y = (y1, y2)
T ∈

R2. The jump sizes Yn are independently and identically distributed as multivariate normal
N (α,ΣY ), where α = (α1, α2)

T , and the covariance matrix ΣY is given by:

ΣY =

(
δ21 ρY δ1δ2

ρY δ1δ2 δ22

)
,

with ρY representing the correlation between the jump sizes Y1 and Y2. The expected pro-
portional common jump sizes are expressed as:

κi = EP[exp(Yi)− 1)] =

∫
R
[exp(Yi)− 1]mP(dyi) i ∈ {1, 2},

4The examination of dividend payout, as discussed in papers such as Cheang and Chiarella (2011), can
be easily incorporated into the model. However, since it does not constitute a central core here, it is omitted
to prevent additional complexity, but discussed in Appendix A.2.

5For σ2 = σ2
1 and σ2 = 0, the formula from Black and Scholes (1973) is obtained.
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where mP(dyi) is the density of Yi (e.g., Merton, 1976).
Next, let Ni,t be a Poisson process with a constant arrival rate of jumps λi and jump size

Zi, taking values zi ∈ R for i ∈ {1, 2}. These processes are uncorrelated and specific to each
asset. The idiosyncratic jump sizes are independently and identically normally distributed
as N (αii, δ

2
ii). The expected proportional unique jump sizes are given by:

κZi
= EP[exp(Zi)− 1] =

∫
R
[exp(Zi)− 1]mP(dzi) i ∈ {1, 2},

where mP(dzi) is the density of Zi.
In summary, for each asset, the n-th common jumps Y1,n and Y2,n occur simultaneously,

determined by the same Poisson arrival process Nt. These jointly occurring jumps can be
linked to macroeconomic shocks in the system, representing globally undiversifiable risks. The
m-th jump Z1,m or k-th jump Z2,k, specific to the i-th asset, is determined by the Poisson
arrival process Ni,t. Jumps unique to each stock can be attributed solely to idiosyncratic
shocks for that particular asset, defining globally diversifiable risks.

The return dynamics of the assets can be expressed as:

dXi

Xi

=(µi − λκi − λiκZi
)dt+ σidWi,t

+

∫
R
[exp(yi)− 1]p(dyi, dt) +

∫
R
[exp(zi)− 1]p(dzi, dt) i ∈ {1, 2},

where p(·, dt) is the Poisson measure. Poisson measures and the bivariate Wiener process are
independent. The stock prices are given by the solution:

Si,t = Si,0 exp

((
µi − λκi − λiκZi

− σ2
i

2

)
t+ σWi,t +

Nt∑
n=1

Yi,n +

Ni,t∑
m=1

Zi,m

)
i ∈ {1, 2}.

To achieve a suitable and fair evaluation of the final payoff conditioned on information
about the underlying asset prices, the probability measure P is transformed to Q using the
transformation proposed by Esscher (1932), see Appendix A.1. After applying the transfor-
mation, the change in the intensity is defined by:

λ̃ = λEP[exp(γ
TY )]

λ̃1 = λ1EP[exp(β1Z1)]

λ̃2 = λ2EP[exp(β2Z2)],

and the expected jump sizes are transformed to:

κ̃i = EQ[exp(Yi)− 1] i ∈ {1, 2}
κ̃Zi

= EQ[exp(Zi)− 1] i ∈ {1, 2}.

Hence, under Q, the distribution of the jump sizes also changes. Yn remains independently
and identically multivariate normally distributed with α̃ = α+ ΣY γ; the jump sizes Zi are
independently and identically normally distributed with α̃ii = αii + δ2iiβi for i ∈ {1, 2}.
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The parameters γ for the joint process, and βi with i ∈ {1, 2} for the distinct processes,
are fundamental factors in the transition from P to Q. The market, comprising assets with
jump components, is inherently incomplete following the sense of Harrison and Pliska (1981).
When accounting for market prices of jump risks, multiple equivalent martingale measures
emerge, leading to different option prices. For example, if all factors equal zero, the scenario
is akin to Merton (1976) where all jump risks are unpriced. If γ ̸= 0 and/or βi ̸= 0,
changes occur in both jump-arrival intensities and jump-size distributions. Subsequently, in
the empirical analysis attention is directed toward these parameters in the calibration process
to establish the market premium for the defined risk classes, underscoring their key role in
the model. It is also important to note that these parameters affect only the compounded
Poisson processes, specifically the intensity and size of the jumps, without impacting the
underlying risk itself. Therefore, these parameters are purely related to the tail risk.

For the derivation of a closed-form option pricing formula considering these factors, the
money account is assumed as the numeraire (e.g., Geman et al., 1995). The resulting option
price formula is based on the closed-form solution of Cheang and Chiarella (2011).6 The
dynamics under Q are expressed as:

Xi

Xi

= rdt+ σidW̃i,t +

∫
R
[exp(yi)− 1]q(dy, dt) +

∫
R
[exp(zi)− 1]q(dzi, dt) i ∈ {1, 2},

where W̃i,t denotes standard Brownian motion components under Q, and q represents the
Poisson measures under Q. Therefore, the option price for the exchange of the two assets
can be formulated as:

C(S1, S2) =
∑
k

∑
m

∑
n

exp
(
− (λ̃1 + λ̃2 + λ̃)(T − t)

)(λ̃1(T − t))k

k!

(λ̃2(T − t))m

m!

(λ̃(T − t))n

n!

×

[
S1 exp

(
− (λ̃1κ̃Z1 + λ̃κ̃1)(T − t) + kα̃11 +

kδ211
2

+ nα̃1 +
nδ21
2

)
Φ(d1,t,k,m,n)

−S2 exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2)(T − t) +mα̃22 +

mδ222
2

+ nα̃2 +
nδ22
2

)
Φ(d2,t,k,m,n)

]

where:

d1,t,k,m,n =
ln(S1

S2
) + (−λ̃(κ̃1 − κ̃2)− λ̃1κ̃Z1 + λ̃2κ̃Z2)(T − t) + µk,m,n +

σ2
k,m,n(T−t)

2

σk,m,n

√
T − t

6Cheang and Chiarella (2011) defines the measure transformation using the Radon-Nikodym derivative,
while this paper employs the Esscher transformation, more common in actuarial and option literature (e.g.,
Elliott et al., 2005). The Radon-Nikodym derivative provides separate parameters for jump probability and
size, whereas the Esscher transformation defines a measure Q with a single parameter. The procedure for
deriving the closed-form solution remains unaffected by these different approaches. Furthermore, it can be
shown that the parameters of the Radon-Nikodym derivative have a unique relation to the parameter derived
here, which also applies to further transformations such as the Wang transformation (e.g., Kijima, 2006;
Labuschagne and Offwood, 2010). Therefore, the transformation selection is not a limitation here.
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d2,t,k,m,n = d1,t,k,m,n − σk,m,n

√
T − t,

with:

µk,m,n = k(α̃1,1 +
δ21,1
2

)−m(α̃2,2 +
δ22,2
2

) + n(α̃1 − α̃2 +
δ2

2
)

σ2
k,m,n = σ2 +

kδ211
T − t

− mδ222
T − t

+
nδ2

T − t
,

where:

δ2 = δ21 + δ22 + ρY δ1δ2.

In the absence of jump risk, when α̃i = α̃ii = 0 and δi = δii = 0, the jump intensity be-
comes zero, resulting in κ̃i = κ̃Zi

= 0 for i ∈ {1, 2}. Consequently, the option pricing formula
of Margrabe (1978) is received, returning to the original model utilized at the beginning of
the section. Given that this paper examines a single-period model, the subsequent content
adheres to the condition of T − t = 1. This does not represent a limit but instead reflects
non-life insurance contracts or cat bonds and cyber bonds, which are issued for a fixed term
without adjustments during the period.

2.4 Alternative Models and Limits

To facilitate a comparison with the newly proposed OM, a standard model (SM) from ex-
pected value theory and an extension by Zanjani (2002) is presented. To maintain simplicity,
no risk free discounting is applied. The premium is defined as the expected loss plus a loading:

P = (1 + ℓ)E[L̄].

Estimating ℓ for insurance companies is challenging. To apply linear factor models to insur-
ance seemed obvious, but direct estimation of liability betas is infeasible (e.g., Cummins and
Harrington, 1985; Cox and Rudd, 1991). Therefore, these models are not suitable for under-
standing the high insurance prices, especially for catastrophic lines. Zanjani (2002) addressed
this issue by proposing that the primary driver of catastrophe insurance prices is the cost of
capital, rather than “beta” or other factors. He argues that while capital costs represent a
relatively small portion of production costs in the broader industry, they are significant in
lines like catastrophe insurance, which requires large amounts of supporting capital. Zanjani
proposed an approach that integrates risk management with standard asset pricing, while
also considering the policyholder’s concern about solvency. According to Braun et al. (2023),
the Zanjani model (ZM) can be summarized as follows:

P = E[L̄]− E[D] + c.
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Here, D denotes the difference between the expected payout and the realized payout in the
event of insolvency:

D = max[L̄− Ȳ1, 0].

Since the default factor D also contains the premium, the model ZM does not have a closed-
form solution. The cost of equity, denoted by c, is expressed as:

c = (τ + rrisk)S0.

Here, rrisk signifies a risk premium determined by the correlation between loss and the capital
market. This correlation is often assumed to be close to zero (e.g., Cummins and Harrington,
1985; Froot et al., 1995; Zanjani, 2002), which leads to frictional cost as the main driver.
Amidst the Covid-19 crisis, scholars have begun to recalibrate this term. Currently, there is no
definitive evidence regarding the specific nature of this factor. Suitable models for parameter
estimation have yet to be established. Therefore, either factor models or consumption-based
approaches are used (e.g., Braun et al., 2019a; Braun et al., 2019b).

Both alternative pricing models rely on first-order terms. In contrast, the new OM not
only incorporates first-order terms but also identifies second-order terms as significant price
drivers. Notably, terms related to the market environment are absent in the alternative
models. While both models overlook market and loss uncertainties, the standard model also
fails to consider any insolvency risks. Conversely, model ZM focuses solely on the insolvency
risk for policyholders, without addressing the corresponding risk for shareholders.

All pricing models produce identical outcomes when jump risks, insolvency risks, and
other frictions are removed. In such scenarios, the premium should correspond to the expected
loss. This market is distinguished by either an infinite amount of equity or no variance. An
equivalent scenario is a fully diversifiable risk, which is not priced, see Merton (1976).

Lemma 1. Under the assumptions of a frictionless market without insolvency and jump risk,
all models satisfy:

lim
S0→∞

P = E[L̄] and lim
σ→0

P = E[L̄].

Proof. See Appendix A.3.

With Lemma 1 established, the models exhibit convergence in a frictionless market with-
out insolvency and jump risks. Additionally, the OM demonstrates its capability to incorpo-
rate non-linear insolvency risks and jump risks into pricing within market contexts.

Lemma 2. In a frictionless market without insolvency risk but with a positive probability
of jump occurrences, the influence of jump risk is negligible, and consequently, it remains
unpriced. The premium equals the expected loss:

lim
S0→∞

P = E[L̄].

Proof. See Appendix A.3.
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With the ZM as defined here, the insurability of correlated jump risks is impossible in an
insolvency-free market context. In the presence of correlated jump risks where rrisk > 0, it
follows that if S0 tends towards infinity, P also tends towards infinity. However, if the jumps
can be assumed to be uncorrelated then rrisk = 0 and the ZM would also fulfill Lemma 2.
This underlines the limits of a linear and constant factor approach when it comes to jump
risks.

Besides the two alternative models presented here, there are also other possibilities. In
the context of pricing cat bonds there exist contingent claim models that use compounded
Poisson processes, such as models proposed by Lee and Yu (2002) or Ma and Ma (2013).
However, the OM presented here differs in three key aspects: First, it is applicable across all
four risk classes, not limited to cat bonds. Second, it provides a closed-form making it more
practical and accessible. Third, it specifically prices the jump risk, rather than operating
within the framework established by Merton (1976) with unpriced risk.

3 Application

To apply the OM, the model’s parameters are estimated using historical data. It is important
to emphasize that the purpose of this section is to apply the model and compare it with
established models. The goal is to demonstrate how individual model parameters can be
calibrated and to analyze their impact on pricing. This section does not aim for a precise
real-world application, as this is not feasible given the limitations of the available data.
For example, historical data on rare events are scarce, leading to a significant peso problem.
Moreover, even when the dynamics of these events are known, the coverage signed may differ.
As a result, the dynamics of the events and the loss portfolio can diverge significantly, for
instance, when certain events are excluded from the coverage. A more detailed discussion on
this point, along with a real-world application, is provided in Section4.

3.1 Calibration

For the risky rate r̄ associated with the investment of the opening cash flows, the S&P
500 index is selected. The historical performance of the S&P 500 index, as reported by
Morningstar (2023), shows an average annual total return of approximately 9% over the past
decade, with a standard deviation of 15%. These parameters are applied to r̄, meaning E[r̄] =
0.09 and SD(1 + r̄) = 0.15. Unless otherwise specified, these are the baseline assumptions
for the return.

The insurance sector demonstrated resilience during the financial crisis (OECD, 2011).
Therefore, for the first two categories – locally insurable risk and globally insurable risk –
no jump risks from the S&P 500 index are considered. However, for the last two categories,
where the focus shifts to the presence of jump risks and the capital market, rather than
insurers, covers the risks, this assumption no longer holds. For globally diversifiable risk, the
jump of the risky rate is independent of the “insured” risk. Based on historical market shocks
documented by MFS (2023), it is assumed that a market crash occurs every 10 years, with
an average decline of 43.11% and a standard deviation of 0.34 times the expected value. This
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implies that λ1 = 0.1, with the jump sizes given by EP[Z1] = 0.5689 and SD(Z1) = 0.34.
As discussed later, globally undiversifiable risk is estimated based on the occurrence of a
pandemic. Historical data suggests that such events occur twice in a century (Centers for
Disease Control and Prevention, 2023), with the assumption that a global pandemic triggers
a capital market shock. Due to the limited data available to calibrate the jump sizes for such
events, the previously estimated jump size is retained. However, the jump is now considered
joint, with λ = 0.02.

The assessment of locally insurable risk relies on US indemnity losses, as documented in
Frees and Valdez (1998). The dataset comprises 1,500 general liability claims, each repre-
senting indemnity payments in thousands of USD. The claims dataset is accessible through
the R packages copula and evd. The expected loss per claim is 41.21 TUSD, with a stan-
dard deviation of 102.75 TUSD. The parameters are normalized to the expected loss without
default risk, so E[L] = 1 and SD(L) = 2.45.

Globally insurable risk is calibrated on data from Grinsted et al. (2019), encompassing
the majority of United States hurricanes dating back to the early 20th century. For this risk
category, extreme events are omitted, excluding the 10% of the most potent hurricanes (see
Braun et al., 2023). Given the vulnerability of Texas and North Carolina to hurricanes and
the absence of historical data indicating a hurricane simultaneously impacting both states
(uncorrelated risk), these two states are used for the analysis. Following the data, Texas
exhibits an expected annual hurricane loss of USD 1,685 million with a standard deviation
2.68 times the mean. North Carolina’s expected annual hurricane loss amounts to USD
1,533 million with a standard deviation of 3.34 times the mean. The combined portfolio of
hurricane losses for both states have an annual loss of USD 3,218 million with a standard
deviation of 2.05 times the mean.

Globally diversifiable risk addresses the excluded 10% of the most potent hurricanes,
which are now assumed to be transferred to the capital market via a cat bond. This means
that the jump probability is 10%. All US hurricane losses from Grinsted et al. (2019) are
taken into account. Typically, cat bonds have an attachment point beyond which they
are triggered. In this context, the trigger is set at the 90% quantile of annual hurricane
losses, meaning that only losses exceeding USD 64,503 million are covered. Losses below this
threshold remain within the insurance market or are borne by policyholders. Consequently,
the insurance market anticipates an expected annual hurricane loss of USD 15,966 million,
with a standard deviation approximately 1.32 times the mean. The cat bond is assumed to
cover losses up to a maximum of USD 103,373 million, corresponding to the 95% quantile. If
a hurricane triggers the cat bond, an expected loss of USD 26,949 million falls into the capital
market. This segment carries an expected annual hurricane loss with a standard deviation of
around 0.53 times the expected value. After normalizing with respect to the loss that remains
in the (re)insurance market, the expected jump size is EP[Z2] =

64,503+26,949
15,966

= 5.7279. It is
also important to note that this calibration is not based on market-driven data from a traded
bond. This is due to two key limitations: the availability of only annual data and the lack
of information regarding the coverage, which will be adressed in detail in Section 4.

Globally undiversifiable risk is represented by a pandemic occurring twice per century,
as evidenced by the Spanish flu and Covid-19 (Centers for Disease Control and Prevention,
2023). As there are only two data points for a pandemic to date, calibration is not possible.

14



Therefore, also to ensure comparability with cat bond from the globally diversifiable risk,
the same jump size is assumed. This involves adopting a lower limit for the jump process,
recognizing that, in reality, undiversifiable jumps are significantly larger (e.g., APICA, 2020).
Consequently, the jump probabilities are reduced, but the jump itself is included as a joint
process with correlated jump sizes. An overview of all components can be found in Table 1.

Risk category E[r̄] SD(1 + r̄) λ1 EP[Z1] SD(Z1) λ EP[Y1] SD(Y1)

Locally insurable risk 0.09 0.15

Globally insurable risk 0.09 0.15

Globally diversifiable risk 0.09 0.15 0.1 0.5689 0.34

Globally undiversifiable risk 0.09 0.15 0.02 0.5689 0.34

Risk category E[L̄] SD(L̄) λ2 EP[Z2] SD(Z2) λ EP[Y2] SD(Y2)

Locally insurable risk 1 2.45

Globally insurable risk
Texas 1 2.68
North Carolina 1 3.34
Mixed portfolio 1 2.05

Globally diversifiable risk 1 1.32 0.1 5.729 0.53

Globally undiversifiable risk 1 1.32 0.02 5.729 0.53

Table 1: Stochastic components of the OM.

This table summarizes all model parameters along with their variables and corresponding values. The upper
section displays the calibration of the risk rate r̄, while the lower section outlines the calibration of the loss
L̄, both of which depend on the respective risk categories.

To compare the OM with the ZM, rrisk must be estimated. Since general insurance-related
betas are close to zero, rrisk = 0 holds for the first two categories. The latest estimate of
rrisk = 0.005 for globally diversifiable risk and rrisk = 0.206 for globally undiversifiable risk
from Braun et al. (2023) is used.

Frictional costs are assumed as follows: (1) τ = 0 and (2) τ = 0.05 for locally insurable
risk, which, according to Zanjani (2002), corresponds to the commercial auto line. No fric-
tional costs are assumed for globally insurable risk, as these are not necessary in the analysis.
Braun et al.’s estimation for the cat bond market is also used for frictional costs and applies
to both risk categories, as there is no calibration market for the latter category. Therefore
τ = 0.045 for both globally diversifiable risk and globally undiversifiable risk. Nevertheless,
Zanjani (2002) has pointed out that the relative cost of capital varies with the underlying
risk
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3.2 Results

The results demonstrate that the OM can be applied across various risk categories and
effectively prices risks in comparison to the existing ZM and SM models. It accounts for
insolvency risks and diversification, highlighting the challenges that arise when large amounts
of capital are required, driving up costs. Additionally, by taking the market environment into
account, it can adapt to both soft and hard market phases. The OM determines market prices
for cat bonds through a transformation of the measure, which is further explored in Section
4. Most importantly, the model underscores the limits of private risk sharing, showing that
globally undiversifiable risks, such as pandemics, would incur such high transfer costs that
they become economically unfeasible. This highlights the clear boundaries of private risk
sharing and the necessity for public-private partnerships.

Locally Insurable Risk

Figure 1 provides an overview of the premium relative to the expected loss for models SM,
ZM and OM, (a) without frictional costs and (b) with frictional costs of τ = ℓ = 0.05.

In the frictionless case, the premium in the SM remains fixed at 1, as expected, since
insolvency risk and market conditions are not considered. The ZM consistently has the
lowest premium because it reflects the policyholder’s perspective, excluding shareholder risk.
The OM falls between the other two models. These latter models align with the anticipated
framework: as insolvency risk decreases, the premium rises, and both show the convergence
towards the expected value, as outlined in Lemma 1. When frictional costs are introduced,
the premium in the SM increases but stays constant. The relationship between models ZM
and OM remains similar; however, due to the frictional costs, neither model converges to the
expected value but instead experiences exponential growth. This exponential rise is driven
by the large equity requirements, as the frictional costs are linear in equity, and the equity
needed to cover 1% of the tail risk grows non-linearly, as described in Zanjani (2002).

(a) Market with no frictonal costs. (b) Market with τ = ℓ = 0.05.

Figure 1: Premium for different models and market scenarios.

This figure illustrates the premium relative to the expected loss for (a) a market without frictional costs and
(b) a market with frictional costs of τ = ℓ = 0.05. It calculates the premium based on the coverage of the
loss distribution for the SM, ZM, and OM.
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Figure 2 illustrates the premium under (a) varying market volatilities and (b) different loss
volatilities. As market volatility decreases, premiums rise because shareholders demand com-
pensation for investing in safer equity, leading to higher premiums for policyholders seeking
enhanced security. Conversely, when loss volatility decreases, the premium increases. This
is due to the greater certainty and the convergence toward the expected loss. It is important
to note that no frictional costs are included here. Higher volatility is often associated with
the need to hold more capital, which in turn results in higher premiums.

(a) Changing market volatility. (b) Changing loss volatility.

Figure 2: Premium for different market and loss volatilities.

This figure illustrates the premium relative to the expected loss for (a) changing market volatilities and (b)
changing loss volatilities. It calculates the premium based on the coverage of the loss distribution for the
OM.

The model presented captures the price dynamics of locally insurable risks commonly
observed in insurance markets. First, the assessment of default risk for policyholders is
essential. Second, pricing mechanisms in these markets are significantly shaped by insolvency
risk and frictional costs. Third, the premium is influenced by the dynamic interaction between
market volatility, loss uncertainty, and insolvency risk. Consequently, the new OM not
only addresses jump risks, as will be shown later, but also emphasizes the importance of
incorporating higher-order factors to accurately reflect varying market conditions, such as
soft or hard markets.

Globally Insurable Risk

Two separate hurricane risks are analyzed, one in Texas and the other in North Carolina. The
data shows no common events in the past, indicating that these risks are uncorrelated. Two
scenarios are compared: one where individual portfolios are insured locally, and another where
a reinsurer covers the combined portfolio, diversifying the associated risks. Figure 3 illustrates
the equity required for each (re)insurer to underwrite the risk. The reinsurer shows the
highest capital requirement but also manages the largest policy volume. When comparing the
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aggregated capital needs of local insurers, the reinsurer consistently requires less capital for
the same portfolio and insolvency risk, an effect that becomes more pronounced with increased
tail risk. This is due to the global diversification achieved through reinsurance, highlighting
a key benefit: the improved efficiency of risk diversification through a larger capital base.
Figure 4 demonstrates this, as the reinsurer, by minimizing portfolio variance, can charge
a lower risk premium, benefiting policyholders. However, this advantage diminishes when
correlated events, like hurricanes affecting both Texas and North Carolina, occur.

The SM does not account for diversification (additive expected values), while the ZM
incorporates this via the default variableD, as the default probability is tied to the cumulative
distribution function. Additionally, like the OM, frictional costs decrease with reduced equity.

Figure 3: Equity for various local and global portfolios.

This figure illustrates the required equity for various portfolios: an aggregated portfolio comprising two local
insurance portfolios that sum the losses from Texas and North Carolina; a reinsurer portfolio that diversifies
the risks from both states; and the local portfolios addressing the risks from Texas and North Carolina
individually. The equity is calculated based on the coverage of the loss distribution.

Figure 4: Risk premium for various local and global portfolios.

This figure illustrates the risk premium relative to the expected loss for three different portfolios: the local
portfolios addressing the risks from Texas and North Carolina individually and a reinsurer portfolio that
diversifies the risks from both states. It calculates the risk premium based on the coverage of the loss
distribution.
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Globally Diversifiable Risk

Three scenarios for the cat bond and the bond multiple – i.e., how many times the initial
modeled expected loss investors receive in terms of the coupon – are examined (see Table 2).
If the multiple equals 1, it indicates a coupon without a risk premium. A comparison with
the SM is unnecessary here, as it does not include any of the dynamics and would be constant
at 1. Furthermore, since catastrophe bonds are fully collateralized, meaning D in the ZM is
zero, the ZM in this context reflects pricing based solely on traditional beta risk premiums.
In Scenario 1, the probability of the jump in loss is positive, the risky rate has no jump risk,
and there are no frictional costs. In this case, the multiple from the OM is approximately
1.07, indicating a risk premium of 7% of the expected loss. If the risky rate also has a risk of
a crash, the risk premium falls to around 2%. It is consistent with previous results that the
more volatile the market, the lower the premium. Scenarios 1 and 2 are identical in the ZM,
as it does not include a market environment and has a multiple of 1.0766. This proximity
to Scenario 1 of the OM is not coincidental. The estimated jump risks have comparatively
low volatility (small second-order), there is no market environment taken into account, and
both the market and the risk are uncorrelated, which emphasizes the relatively small rrisk.
Accordingly, it is expected that both models estimate a small risk premium. Since the ZM
cannot assess the jump risk in the risky rate, it overestimates the risk premium at this point.
In the last scenario, frictional costs are added, and the risk premium rises to 58% for the OM
and to 76% for the ZM. This aligns with previous research indicating that frictional costs
account for a large part of the premium for extreme risks (e.g., Zanjani, 2002; Braun et al.,
2023).

According to Artemis (2024b), the average multiple for the cat bond market for Q2 2024
is 4, meaning the risk premium is 300% of the expected loss. However, the market risk
premium calculated here with the OM is only around 57%. Assuming that the underlying
cat bond is priced consistently with the market, a probability distortion can be assumed. The
parameters of the measure transformation must be calibrated accordingly. The calibration
is straightforward. Q is determined via the transformation parameter, which corresponds to
the market price. The ZM alone cannot estimate a measure transformation. Accordingly,
another model would first have to be used to determine the measure Q. For comparability,
the measure transformation estimated with the OM is used here.

In Scenario 4, which has the same market conditions as Scenario 3, the ZM is unable to
reflect the price accurately due to its reliance on a pure expected value structure, without
accounting for jump risks and higher orders. In addition to the measure Q, estimating the
factor rrisk would also require a different approach, although the specifics are unknown. In
the last scenario, Scenario 5, the frictional costs are removed for both models. A reduction in
frictional costs can significantly reduce the risk premium, but it remains above the estimates
with the P measure. Accordingly, the probability distortion of investors is another major cost
driver next to frictional costs, which is uniquely estimated here using the market calibration.

19



Estimates Cat bond multiple

Scenario Measure OM ZM OM ZM

1 P λ2 = 0.1 rrisk = 0.005 1.0689 1.0766

2 P λ1 = λ2 = 0.1 rrisk = 0.005 1.0201 1.0766

3 P λ1 = λ2 = 0.1 rrisk = 0.005
1.5783 1.7622

τ = 0.045 τ = 0.045

4 Q
λ1 = λ2 = 0.1

rrisk = 0.005
4 2.5557τ = 0.045

β2 = −0.402
τ = 0.045

5 Q λ1 = λ2 = 0.1
rrisk = 0.005 2.8781 1.1556

β2 = −0.402

Table 2: Multiples for the cat bond without and with measure transformation, estimated
with the OM and ZM.

This table presents the results of cat bond pricing for both the OM and ZM. Five scenarios are analyzed:
scenarios 1 to 3 are under the P measure, while scenarios 4 and 5 are based on the Q measure. Depending on
the scenario, jump risks and frictional costs are considered. Details on what is included in the pricing can be
found in the “estimates” tab for each respective model. The last two columns display the cat bond multiple
derived for both models.

Globally Undiversifiable Risk

Table 3 displays the multiple for the pandemic bond. In Scenario 1, the joint jump is
considered. Compared to the cat bond estimate, the multiple more than triples under the
OM, despite the probability of occurrence being only one-fifth by the same jump size. Due to
the linear risk cost assumption of the ZM and the high equity required, this model reaches a
multiple of 16 under the Pmeasure. Including frictional costs doubles the multiple for the OM
and increases it by approximately 20% for the ZM. Although the tail risk – and consequently,
ex-ante investor behavior – likely differs between pandemics and natural disasters, limited
data necessitates the assumption that the probability distortion is identical to the estimated
cat bond distortion. This assumption allows for a comparison of these risks. Scenario 3
demonstrates that the resulting market risk premium is more than 16 times the expected
loss. For comparison, the largest historical market multiple was 7.5 at the inception of cat
bonds in 2001 (Artemis, 2024b). When considering the Q measure for the ZM, the multiple
exceeds 43. This leads to the conclusion that, given current market conditions, transferring
pandemic risks through the capital market is not feasible (e.g., Gründl et al., 2021). Potential
interventions could include reducing frictional costs. In Scenario 4, where no frictional costs
are assumed, the multiple decreases to less than 11 for the OM and 35.5 for the ZM. While a
market risk premium of just under 1000% of the expected loss remains very high, it represents
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a significant reduction. However, it is important to note that a lower limit for the jump size
was used here. If the jump size increases, the relative multiple may remain stable, but
the absolute values become unaffordable. Additionally, the correlation of jump sizes was
omitted. Since only extreme events with comparably low variance that occur together due
to the Poisson process are considered, correlation has minimal impact on the multiple here.
However, it is evident that linear models and previous asset pricing models, such as the
consumption model, are unsuitable for measuring this type of extreme risk due to the linear
cost structure.

In conclusion, the pricing of a pandemic bond reveals that it is prohibitively expensive
compared to other risk classes, making it difficult to transfer to the capital market without
adjustments, such as government support (e.g., Braun et al., 2023). It is important to
highlight that, to date, no instrument like a pandemic bond exists, and this analysis explains
the reasons behind this absence.

Estimates Pandemic bond multiple

Scenario Measure OM ZM OM ZM

1 P λ = 0.02 rrisk = 0.206 3.8122 16.1562

2 P λ = 0.02 rrisk = 0.206
6.6439 19.4670

τ = 0.045 τ = 0.045

3 Q
λ = 0.02

rrisk = 0.206
17.2916 43.1152τ = 0.045

γ2 = −0.402
τ = 0.045

4 Q λ = 0.02
rrisk = 0.206 10.8625 35.5646

γ2 = −0.4026

Table 3: Multiples for a fictive pandemic bond without and with measure transformation,
estimated with OM and ZM.

This table presents the results of fictional pandemic bond pricing for both the OM and ZM. Four scenarios
are analyzed: scenarios 1 and 2 are under the P measure, while scenarios 3 and 4 are based on the Q measure.
Depending on the scenario, frictional costs are considered. Details on what is included in the pricing can be
found in the “estimates” tab for each respective model. The last two columns display the pandemic bond
multiple derived for both models.

In summary, the new pricing model reflects the essential relationships between risk and
the market, a component missing in previous models. It can calculate market premiums
based on the market environment, accommodating both hard and soft market conditions.
Additionally, it can price jump risks, whether independent or joint, which is challenging for
previous models due to the lack of suitable factor models and sufficient data to estimate the
risk of heavy-tailed distributions.
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4 Real-World Estimation of Q
The previous section aims to illustrate how individual model parameters can be calibrated
and to assess their impact on pricing, without seeking a precise real-world application. A
primary reason for this limitation is the insufficient data on natural catastrophic risks. In
general, every cat bond is modeled by a specialized risk modeling and calculation agency.
The modeling process does not rely solely on historical data but incorporates environmental
factors such as climate change, expert opinions, and large-scale data simulations tailored to
the structure of the underlying cat bond. For instance, cat bonds are written for specific
risks, ranging from Asian property catastrophe risks to wildfire risks. Exclusions may also
exist within the bonds; for example, many cat bonds for the “US named storm” risk type
exclude Florida. Cat bonds also vary in terms of trigger type, attachment point, expected
loss, and spread. Another challenge with using only historical data is the lack of transparency
regarding the underlying coverage. Since the risk is initially underwritten by a (re)insurer or
broker before being transferred to the capital market, it is essential to know which risks may
have already been excluded, e.g., a coverage cap. For further details on cat bond structures,
refer to Artemis (2024a).

This section aims to address the mentioned issues by using unique cyber data. The dataset
is obtained from a leading risk modeling agent and based on a loss portfolio from a global
reinsurer, which represents the worldwide cyber risk market. The dataset contains 10,000
losses, ranging from daily incidents to extreme events. Further details about the dataset are
available in Kasper et al. (2024). The cyber bond market so far exhibits little heterogeneity
in terms of risks. The trigger type is indemnity, and the risk type is cyber risks. Hannover
Re’s smaller 13.75 million Cumulus Re cyber bond, which focuses solely on cloud outages,
is an outlier in this regard. An additional advantage is that cyber bonds have primarily
been issued since December 2023, offering a short time span that allows for the comparison
of investor risk attitudes within a single period. In the cat bond market, this risk attitude
has proven to be time dependent, as shown in Artemis (2024b). Accordingly, the limitations
mentioned before can be addressed and the peso problem can be avoided.

The analysis includes five market-traded cyber bonds from four different cedents, as shown
in Table 4. Since January 2023, when Beazley issued the first cyber bond, five general cyber
bonds have been issued by three more cedents. This analysis includes all cyber bonds for
which the required information is publicly available (Artemis, 2024a). As a result, the analysis
covers over 83% of the issued bonds and all cedents at least ones. This analysis encompasses
over 6% of the total volume of new cat bond market transactions globally and nearly 8%
of the transactions conducted during this period (AON, 2024). As outlined in Section 3.1,
the stochastic components are calibrated based on the available data. However, the specific
calibration results cannot be provided here due to the confidentiality of the data.7

7A key issue is that τ is currently unknown. Drawing a direct comparison to the cat bond market is
inappropriate because the calibration of τ relies on models that are not suitable, as previously discussed, and
frictional costs vary depending on the type of risk. Therefore, this analysis excludes all other cost drivers,
such as τ and jumps in the risky rate, focusing instead of an upper bound for the cyber Q. Since the other
parameters influence the calibration for each bond in the same manner, this exclusion does not affect the
overall results.
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The uniqueness of this analysis cannot be overstated. First, the data from the risk
modeling agency and the issued cyber bond come from a similar time frame, ensuring the
risk assessment is up to date. Previous research has struggled to obtain such data, making this
procurement a significant achievement. Second, the timing of this analysis aligns perfectly
with the launch of the cyber bonds, meaning the bonds still reflect a relatively homogeneous
risk. In contrast, the cat bond market, as well as the Cumulus Re cyber bond, show clear
signs that the cyber bond market will become heterogeneous in the future, making such
straightforward analysis possible only at this moment. Third, because of the understanding
of the underlying cyber risk and the fact that the cyber bond exclusively covers pure tail
risks, this analysis can identify a tail risk premium for the first time. In contrast, in stock or
option markets, returns are influenced by various other factors.

Bond Date of issue
Modeling

Cedent
Attachment Expected

Spread
agency point loss

1 Nov 2023 CyberCube AXIS Capital 2.46% 1.97% 9.75%

2 Dec 2023 CyberCube Swiss Re 2.228% 1.721% 12%

3 Dec 2023 CyberCube Chubb 2.142% 1.387% 9.25%

4 Dec 2023 RMS Beazley 1.71% 1.26% 13-13.25%

5 Sep 2024 RMS Beazley 1.2% 0.93% 9.5-10.5%

Table 4: Public information of the target bonds.

This table presents public information on cyber bonds sourced from Artemis (2024a). For five bonds, it
includes the date of issuance, the corresponding modeling agency, and the cedent. Additionally, bond-
specific details such as the attachment point, the expected loss as a percentage of the notional amount, and
the spread as a percentage of the notional amount are also provided.

Table 5 presents the calibration results, including the attachment and end quantile, the
multiple, and the estimated β2 for each bond. The results indicate that as the attachment
quantile increases, the absolute value of β2 also increases. The same applies to the relation-
ship between the end quantile and β2, but a higher multiple does not necessarily imply a
higher β2. To explore the relationship between β2 and tail risk coverage, Figure 5 illustrates
(a) the attachment quantile and (b) the end quantile in relation to β2. Notably, there is a lin-
ear relationship between β2 and the attachment quantile, while the relationship with the end
quantile is less pronounced. This aligns with existing research, which suggests that catastro-
phe risk investors prioritize compensation for loss probability over loss severity (Braun et al.,
2023; Braun et al., 2024). Furthermore, this calibration provides the first clear evidence that,
besides an incomplete market, the measure Q is unique in relation to tail risk. This find-
ing reinforces both the theoretical framework and the economic interpretation of investors’
subjective ex-ante beliefs about tail risk, as described by Gao et al. (2019).
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Bond
Attachment End

Multiple β2quantile quantile

1 97.54% 99.583% 4.9492 -0.3805

2 97.772% 99.617% 6.9727 -0.5402

3 97.858% 99.697% 6.6691 -0.6020

4 98.29% 99.699% 10.3175 to 10.5159 -0.8230 to - 0.8293

5 98.8% 99.77% 10.2151 to 11.29 -0.9864 to -1.019

Table 5: Calibration output

This table provides calibration information for the five cyber bonds. It includes the attachment point and
end quantile as percentages, along with the computed cyber bond multiple. The final column presents the
estimated β2, which represents the calibrated parameter of the Q measure.

(a) Attachment quantile with R2 = 0.9793. (b) End quantile with R2 = 0.8792.

Figure 5: Relationships with β2.

This figure presents a scatter plot depicting the relationship between the estimated β2 and (a) the attachment
quantile, as well as (b) the end quantile. Additionally, it includes the optimal linear relationship represented
by a trend line.

Economic interpretation

The results indicate that the higher the attachment point – meaning the lower the proba-
bility that the bond will be triggered – the higher the relative risk premium that investors
expect. As previous studies have shown, this behavior cannot be explained by the relative
risk aversion typically exhibited by investors in capital markets. Instead, the pricing behavior
aligns more closely with prospect theory (Barberis, 2013). As Barberis and Huang (2008)
demonstrate, prospect theory leads to a prediction that does not arise from traditional pric-
ing models: specifically, that the skewness in the distribution of a security’s returns – even
idiosyncratic skewness unrelated to the overall market return – will be priced. In particular, a
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security with positively skewed returns will be overpriced relative to what would be expected
in a traditional beta-risk-based economy. The variable Q in the model presented in this paper
illustrates precisely this overpricing. Furthermore, the relationship between Q and the tail
risk demonstrates that the relative overpricing increases as the risk in the tail grows. Impor-
tantly, this tendency is not inconsistent with observations in the insurance market. Sydnor
(2010) shows that under probability weighting, households overweight tail events. As a result
of their heightened focus on these unlikely but highly undesirable outcomes, households are
willing to pay a higher premium for insurance policies. Since this study examines only traded
bonds, it can be inferred that Q reflects the real-world equilibrium between the policyholder
– who is willing to pay more for their insurance due to tail risk aversion – and the capital
market investor, who shares this aversion, resulting in overpricing.

5 Discussion

5.1 The Catastrophic Markup Composition

According to Zanjani (2002), the main cause of high catastrophe markups in insurance pricing
is the large capital commitment involved. Similarly, recent findings demonstrate that capital
costs constitute a significant portion of the premium (Braun et al., 2023). Specifically, in the
context of cat bonds, this commitment is particularly extreme due to the requirement for
full collateralization. Moreover, factors such as the capital market cycle and the risk profile
of the transaction play a crucial role, with diversification within the market being priced in
(e.g.,Lane and Mahul, 2008; Herrmann and Hibbeln, 2023). However, empirical studies such
as Braun et al. (2024) indicate that even after accounting for various factors, a substantial
portion of the returns remains unexplained. This observation raises the question: What
underlies these unexplained returns? The introduction of the measure Q as a probability
distortion adds a solution to this discussion. Moreover, Q is assigned an economic significance
that has traditionally been overlooked, as it has primarily been viewed as a “replication
measure”. As Borch (1960) noted, “we may need to sacrifice a principle deemed essential.”
While the proposed model is grounded in an equilibrium view of the world, it diverges
from the assumption of frictionless, complete markets. Importantly, this divergence does
not conflict with Zanjani’s logic. By defining τ in Section 2 as the frictional component,
the model effectively unifies different approaches to understanding these complex dynamics.
Furthermore, it does not conflict with classical asset pricing betas. Assuming τ is defined not
purely as friction but as τ̃ = τ + rrisk – where rrisk, as in Braun et al. (2023), is estimated
using classical asset pricing models – the risk premium defined by Q is still needed (Barberis
et al., 2021). So far, no classical beta can reflect the tail risk aversion of investors, which is not
exclusive to the cat bond market but extends to others as well (Barberis and Huang, 2008).
The idea of quantifying this aversion via the mass change in the jump can be extended
to other markets and is future research. To summarize, this paper argues that a general
composition of returns should consist of three components: frictional costs, traditional asset
pricing, and an overpricing tail risk component, described by a probability distortion for tail
risk, reflected by prospect theory.
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5.2 Limitation and Future Research

A limitation of the OM is its assumptions regarding distributions. In traditional insurance
practices, claims are often assumed to follow a lognormal distribution (e.g., Eling, 2012).
Similarly, catastrophic pricing using compounded Poisson processes is a standard approach
(e.g., Lee and Yu, 2002; Jaimungal and Wang, 2006). However, the distribution of jump risks
remains uncertain. Many alternative models rely on expected value theory, assuming that
“Peaks Over Threshold” (POT) events follow a generalized pareto distribution (GPD). The
challenge with this approach is the lack of a universally accepted model for identifying POT
events, the absence of a natural upper limit to POT losses, and the finite nature of moments
in the GPD (McNeil et al., 2015). Moreover, insurance contracts and cat bonds introduce
further complexity by capping payouts, which requires the use of truncated distributions.
For example, Kasper et al. (2024) show that almost no “extreme tail” risk is covered in the
cyber risk market. This raises the question of whether truncation even favors at the end
the here chosen distributions as a potentially more suitable choice (e.g., Ma and Ma, 2013).
This question presents an opportunity for future research. Additionally, an option model
could be developed that better integrates extreme value theory and adjusts the distribution
of jump risks within the GPD framework. Another potential enhancement could involve
incorporating stochastic volatilities. However, given the small time frames involved and the
availability of a closed-form solution for deterministic volatilities, this limitation appears to
be acceptable.

A second direction for future research should focus on the measure Q. This paper has
already shown initial evidence that investors in the cyber bond market primarily define
spreads based on concerns about tail risk. However, further analysis across various markets
is needed to provide a clearer picture. A comparison between cat bonds and cyber bonds
could also be insightful. This would require comparable data for both natural catastrophe
events and cyber events, which could potentially be supplied by a risk modeling agency.
The model presented in this paper can be used for such comparisons, as alternative models
– such as those relying on time-series data – are not suitable due to the lack of extensive
time-series data for cyber events. Moreover, it is essential to consider the time dimension of
Q. Historical data shows that cat bond multiples vary over time. This prompts the question
of whether these changes are due to fluctuations in tail risk aversion or time-variant factors
such as market risks, liquidity costs, seasonality, and other frictions (e.g., Lane and Mahul,
2008; Herrmann and Hibbeln, 2023). This leads to the follow-up question of the price setting.
As previously mentioned, Q represents the equilibrium in the tail risk aversion between the
policyholder and the capital market investor. However, a key distinction between cat bonds
and cyber bonds to traditional investment instruments is that the investor most likely is
also an policyholder. For example, he insures his private house against natural disasters or
buys cyber insurance for his company. Therefore, it would be valuable to investigate who
ultimately determines this price – whether it is the end customer (policyholder/investor)
or an intermediary, such as a broker, which plays a central role in price setting (see the
intermediary asset pricing literature).
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6 Conclusion

This paper presents a novel and comprehensive model for pricing risk transfer instruments,
offering a significant advancement in understanding how tail risks are transferred and priced
across both insurance and capital markets. The model’s unique integration of insurance /
actuarial (e.g., Doherty and Garven (1986); Gerber and Shiu, 1994) and financial perspectives
(e.g., Merton, 1976; Bates, 1996) addresses key limitations in traditional insurance methods,
which often struggle with jump risks, correlation structures, and market frictions. A key
contribution of this research is the transformation of the underlying jump process from P
to Q. This transformation is particularly impactful in cat bond and cyber bond markets,
where tail risks are most prevalent. Through the application to cyber data, the paper offers
one of the most precise calibrations to date, focusing on the emerging cyber bond market.
The findings demonstrate that investors’ concerns over tail risks primarily drive spreads.
Even in incomplete markets, a unique Q can be defined, which Gao et al. (2019) describe as
reflecting investors’ subjective ex-ante beliefs driven by tail risk concerns. So far, traditional
asset pricing models fall short describing this aversion (e.g., Braun et al., 2019a). Therefore,
the finding has far-reaching implications for understanding market dynamics shaped by rare-
event uncertainty and extreme aversion, which are also represented in the stock and options
markets (e.g., Bollerslev and Todorov, 2011), and in line with previous findings of prospect
theory (e.g., Barberis et al., 2001; Barberis and Huang, 2008).

This model offers a robust framework for assessing risk premiums in markets where tradi-
tional models lack explanatory power, highlighting a new driver of spreads – not just frictional
costs and beta risk premiums but also tail risk aversion. This insight can help investors price
securities more accurately and manage portfolios better in markets exposed to extreme risks.
For governments and regulators, the model emphasizes the need for targeted financial market
interventions for joint events, particularly in response to extreme severe risks like pandemics
that threaten market stability. An example might include using the model to evaluate the
risk exposure in public-private insurance schemes (Braun et al., 2023). Researchers will also
benefit from this work, as it bridges the actuarial probability distortions and financial risk
pricing, creating new approach for studying markets with significant jump risks and return
compositions.

In sum, this model redefines the pricing landscape for insurance-linked securities by of-
fering an empirically grounded, theoretically sound framework for navigating tail risks. It
fills critical gaps in both the insurance and finance literature while delivering a practical and
versatile tool for investors, policymakers, and researchers alike. Although derived primar-
ily for cat bonds and cyber bond markets, the model’s framework can be applied to any
market exposed to jump risks, including stock, options or commodities, and other financial
instruments where extreme events dominate pricing dynamics.
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A Appendix

A.1 Measure Changes using the Esscher Transformation

Define an asset as:

St = S0 exp(Xt),

whereXtt ≥ 0 is a stochastic process characterized by stationary and independent increments,
and X0 = 0. Furthermore, let:

FXt(x) = P(Xt ≤ x)

be the cumulative distribution function, and:

MP,Xt(u) = E[exp(uXt)]

represent the moment-generating function of the random variable Xt under the measure P.
Thus:

MP,Xt(u) =

∫ ∞

−∞
exp(ux)f(x, t)dx,

where f(x, t) is the continuous density of Xt.
8 Building upon the transformation proposed

by Esscher (1932), a transformed density for Xt is:

f(x, t, h) =
exp(hx)f(x, t)∫∞

−∞ exp(hy)f(y, t)dy

=
exp(hx)f(x, t)

MP,Xt(h)

where h is the transformation parameter. The corresponding moment-generating function is
given by:

MQ,Xt(u) =

∫ ∞

−∞
exp(ux)f(x, t, h)dx

=
MP,Xt(u+ h)

MP,Xt(u)
.

Subsequently, the Esscher transformation is derived for the three significant processes in
this study. The analytical findings align with prior literature, exemplified by works such as
Gerber and Shiu (1994) and Runggaldier (2003), where, for instance, Runggaldier transforms
these measures utilizing the Radon-Nikodym theorem. In the provided examples, the time
component is disregarded, as it is not needed in this context.

8For a discrete distribution, the integral can be replaced by a sum.
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Normal Distribution: Assuming Xt = Yt, where Yt is a normally distributed random
variable with a mean of µ and a variance of σ2. The moment-generating function is expressed
as:

MP,Xt(u) = exp(uµ+
1

2
σ2u2).

Through the Esscher transformation, the resulting expression for the moment-generating
function under the new measure Q is:

MQ,Xt(u) = exp
(
u(µ+ hσ2) +

1

2
σ2u2

)
.

Consequently, the new mean under Q can be defined as µ̃ = µ + hσ2. The transformed
normal distribution under Q remains a normal distribution with mean µ̃ variance σ2.

Proof.

MP,Xt(u+ h)

MP,Xt(u)
=

exp
(
(u+ h)µ+ 1

2
σ2(u+ h)2

)
exp(uµ+ 1

2
σ2u2)

= exp
(
(u+ h)µ+

1

2
σ2(u+ h)2 − (uµ+

1

2
σ2u2)

)
= exp

(
(hµ+

1

2
σ2h2 + σ2uh

)
= exp

(
(h(µ+ σ2u) +

1

2
σ2h2

)

Poisson Distribution: Assume Xt = kNt, where Nt is a Poisson process with intensity λ,
and k is a constant. The moment-generating function is defined as:

MP,Xt(u) = exp
(
λ(exp(ku)− 1)

)
Through the Esscher transformation, the resulting expression for the moment-generating
function under the new measure Q is:

MQ,Xt(u) = exp
(
λ exp(hk)(exp(ku)− 1)

)
Consequently, the intensity under Q can be defined as λ̃ = λ exp(hk). The transformed
Poisson process under Q remains a Poisson process with intensity λ̃.

Proof.

MP,Xt(u+ h)

MP,Xt(u)
=

exp
(
λ(exp(k(u+ h))− 1)

)
exp

(
λ(exp(ku)− 1)

)
= exp

(
λ(exp(k(u+ h))− 1)− λ(exp(ku)− 1)

)
= exp

(
λ(exp(ku) exp(kh))− λ exp(ku)

)
= exp

(
λ exp(ku)(exp(kh)− 1)

)
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Compounded Poisson Process: Assume a compounded Poisson process Xt =
∑Nt

i=1 Yt,
where Nt is a Poisson process with intensity λ, and Yt represents a normally distributed jump
size with mean µ and variance σ2. The moment-generating function is defined as:

MP,Xt(u) = E[exp(u
Nt∑
i=1

Yi)]

= exp
(
λ(MP,Yt(u)− 1)

)
Through the Esscher transformation, the resulting expression for the moment-generating
function under the new measure Q is:

MQ,Xt(u) = exp
(
λMP,Yt(h)(MQ,Yt(u)− 1)

)
Consequently, the intensity under Q can be defined as λ̃ = λMP,Yt(h), and the new mean of
the jump size under Q can be defined as µ̃ = µ+hσ2. The transformed compounded Poisson
process under Q remains a compounded Poisson process with intensity λ̃ and mean jump
size µ̃ and variance σ2.

Proof.

MP,Xt(u+ h)

MP,Xt(u)
=

exp
(
λ(MP,Yt(u+ h)− 1)

)
exp

(
λ(MP,Yt(u)− 1)

)
= exp

(
λ(MP,Yt(u+ h)− 1)− λ(MP,Yt(u)− 1)

)
Given the moment-generating function of a normally distributed random variable, one ob-
tains:

MP,Yt(u+ h) = exp
(
(u+ h)µ+

1

2
σ2(u+ h)2

)
= exp

(
uµ+ hµ+

1

2
σ2u2 +

1

2
σ2h2 + σ2uh

)
= exp

(
uµ+

1

2
σ2u2 + h(µ+ σ2u) +

1

2
σ2h2

)
= MP,Yt(u)MQ,Yt(h)

Therefore:

MP,Xt(u+ h)

MP,Xt(u)
= exp

(
λ(MP,Yt(u)MQ,Yt(h)− 1)− λ(MP,Yt(u)− 1)

)
= exp

(
λMP,Yt(u)MQ,Yt(h)− λMP,Yt(u)

)
= exp

(
λMP,Yt(u)(MQ,Yt(h)− 1)

)
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A.2 Influence of Dividends on Premiums

Following Cheang and Chiarella (2011), both assets may yield a dividend return denoted as
ξi, i ∈ {1, 2}. In the context of this study, wherein S2 represents the loss, dividend payments
do not apply to this asset, resulting in ξ1 ≥ 0 and ξ2 = 0. Consequently, the formulation
of the option price for the exchange of the two assets, accounting for dividends, can be
formulated as:

C(S1, S2) =
∑
k

∑
m

∑
n

exp
(
− (λ̃1 + λ̃2 + λ̃)

)(λ̃1)
k

k!

(λ̃2)
m

m!

(λ̃)n

n!

×

[
S1 exp

(
− (ξ1 + λ̃1κ̃Z1 + λ̃κ̃1) + kα̃11 +

kδ211
2

+ nα̃1 +
nδ21
2

)
Φ(d1,t,k,m,n)

−S2 exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2) +mα̃22 +

mδ222
2

+ nα̃2 +
nδ22
2

)
Φ(d2,t,k,m,n)

]

where:

d1,t,k,m,n =
ln(S1

S2
) + (−λ̃(κ̃1 − κ̃2)− λ̃1κ̃Z1 + λ̃2κ̃Z2 − ξ1) + µk,m,n +

σ2
k,m,n

2

σk,m,n

√
T − t

.

The other terms remain unchanged.

Given the indemnity losses in the US from the example in Section 3.1. The dividend yield
of the S&P 500 index was at the end of 2022 by 1.78%, whereas historical dividend yields
for the S&P 500 index have typically ranged from between 3% to 5% (Ross, 2023). Figure 6
illustrates the premium differences between dividends and no dividends. The pattern resem-
bles that seen with frictional costs. This suggests that dividends in alternative investments
are a price determinant for insurance contract premiums.

Figure 6: Premium for different dividends.

This figure illustrates the premium relative to the expected loss for four different dividends. It calculates
the premium based on the coverage of the loss distribution.
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A.3 Proofs

Lemma 1

Proof. In the standard model, the proof is straightforward. In the extension, given the
absence of insolvency risk, E[D] = 0. Moreover, without friction and jump risk, c = 0.
Hence, P = E[L̄]. In the option model, when jump risk is absent, the following relationships
hold:

Y0Φ(d1)− E[L̄]Φ(d2) =S0

⇔ (S0 + P )Φ(d1)− E[L̄]Φ(d2) =S0

⇔ S0(Φ(d1)− 1) + PΦ(d1)− E[L̄]Φ(d2) =0

It is observed that:

lim
S0→∞

d1 = lim
σ→0

d1 = ∞ and lim
S0→∞

d2 = lim
σ→0

d2 = ∞,

leading to:

lim
S0→∞

Φ(d1) = lim
σ→0

Φ(d1) = 1 and lim
S0→∞

Φ(d2) = lim
σ→0

Φ(d2) = 1.

Consequently, the equation simplifies to:

S0(Φ(d1)− 1) + PΦ(d1)− E[L̄]Φ(d2) =0

⇔ P − E[L̄] =0

⇔ P =E[L̄]

Lemma 2

Proof. In the scenario where σ → 0, uncertainty diminishes, eliminating jump risks. Conse-
quently, the focus lies solely on the case where S0 → ∞. Without loss of generality, k, m
and n can be fixed:

exp
(
− (λ̃1 + λ̃2 + λ̃)

)(λ̃1)
k

k!

(λ̃2)
m

m!

(λ̃)n

n!
=

exp
(
− λ̃1

)(λ̃1)
k

k!
exp

(
− λ̃2

)(λ̃2)
m

m!
exp

(
− λ̃
)(λ̃)n

n!
=

Pλ̃1
(k)Pλ̃2

(m)Pλ̃(n),

given the Poisson distribution of the jump occurrences. From the previous proof it is known
that for S0 → ∞:

Φ(d1, t, k,m, n) = Φ(d2, t, k,m, n) = 1.

36



Thus, the option formula can be expressed as:

C(Y1(P ), L̄) =
∑
k

∑
m

∑
n

Pλ̃1
(k)Pλ̃2

(m)Pλ̃(n)

×

[
Y0 exp

(
− (λ̃1κ̃Z1 + λ̃κ̃1) + kα̃11 +

kδ211
2

+ nα̃1 +
nδ21
2

)
− E[L̄] exp

(
− (λ̃2κ̃Z2 + λ̃κ̃2) +mα̃22 +

mδ222
2

+ nα̃2 +
nδ22
2

)]
Moreover:

exp(kα̃11 +
kδ211
2

) = E[exp(kZ1]

exp(mα̃22 +
mδ222
2

) = E[exp(mZ2)]

exp(nα̃1 +
nδ21
2

) = E[exp(nY1)]

exp(nα̃2 +
nδ22
2

) = E[exp(nY2)],

and defining
∑

k,m,n Pλ̃1,λ̃2,λ̃
(k,m, n) =

∑
k

∑
m

∑
n Pλ̃1

(k)Pλ̃2
(m)Pλ̃(n):

C(Y1(P ), L̄) =
∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)

[
Y0 exp

(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
E[exp(kZ1)]E[exp(nY1)]

− E[L̄] exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2)

)
E[exp(mZ2)]E[exp(nY2)]

]

=

[
Y0 exp

(
− (λ̃1κ̃Z1 + λ̃κ̃1)

) ∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(kZ1)]E[exp(nY1)]

− E[L̄] exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2)

) ∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(mZ2)]E[exp(nY2)]

]
The call option must equate to the initial equity, therefore:

C(Y1(P ), L̄) =(S0 + P ) exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

) ∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(kZ1)]E[exp(nY1)]

− E[L̄] exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2)

) ∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(mZ2)]E[exp(nY2)]

=S0.

For the sake of a simpler overview, let’s define:

J1 =
∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(kZ1)]E[exp(nY1)]
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and:
J2 =

∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(mZ2)]E[exp(nY2)]

as a placeholder. Isolating the premium yields to:

P =E[L̄]
exp

(
− (λ̃2κ̃Z2 + λ̃κ̃2)

)
J2

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

+ S0

1− exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

=E[L̄] exp
(
− (λ̃2κ̃Z2 − λ̃1κ̃Z1 + λ̃(κ̃2 − κ̃1))

)J2
J1

+ S0

1− exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

Upon closer examination of J1, its expression can be rephrased. Without loss of generality,
the same restructuring applies to J2 by substituting k and m:

J1 =
∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(kZ1)]E[exp(nY1)]

=
∑
m

Pλ̃2
(m)︸ ︷︷ ︸

=1

∑
k

Pλ̃1
(k)E[exp(kZ1)]

∑
n

Pλ̃(n)E[exp(nY1)].

Without loss of generality, the focus remains on
∑

k Pλ̃1
(k)E[exp(kZ1)] with this equivalence

extending to other components sharing a similar structure:∑
k

Pλ̃1
(k)E[exp(kZ1)] =

∑
k

Pλ̃1
(k) exp(kα̃11 + k

δ222
2
)

=
∑
k

Pλ̃1
(k) exp(α̃11 +

δ222
2
)k

=
∑
k

Pλ̃1
(k)E[exp(Z1)]

k

=
∑
k

Pλ̃1
(k) exp

(
k ln(E[exp(Z1)])

)
Reflecting on the fact that the moment-generating function of a Poisson-distributed random
variable x is defined as MX(u) = E[exp(uX)] =

∑
n P(X = n) exp(un), this results in:∑

k

Pλ̃1
(k) exp

(
k ln(E[exp(Z1)])

)
= MN1

(
ln(MZ1)

)
= exp(λ̃1(exp

(
ln(E[exp(Z1)])

)
− 1))

= exp(λ̃1

(
E[exp(Z1)]− 1)︸ ︷︷ ︸

κ̃Z1

)

= exp(λ̃1κ̃Z1).
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Summarized, it holds:

J1 = exp(λ̃1κ̃Z1) exp(λ̃κ̃1)

J2 = exp(λ̃2κ̃Z2) exp(λ̃κ̃2)

Therefore, the following applies to the premium:

P =E[L̄] exp
(
− (λ̃2κ̃Z2 − λ̃1κ̃Z1 + λ̃(κ̃2 − κ̃1))

)exp(λ̃2κ̃Z2) exp(λ̃κ̃2)

exp(λ̃1κ̃Z1) exp(λ̃κ̃1)

+ S0

1− exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
exp(λ̃1κ̃Z1) exp(λ̃κ̃1)

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
exp(λ̃1κ̃Z1) exp(λ̃κ̃1)

=E[L̄] exp
(
− (λ̃2κ̃Z2 − λ̃1κ̃Z1 + λ̃(κ̃2 − κ̃1))

)
exp

(
(λ̃2κ̃Z2 − λ̃1κ̃Z1 + λ̃(κ̃2 − κ̃1))

)
+ S0

1− exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
exp(λ̃1κ̃Z1 + λ̃κ̃1)

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
exp(λ̃1κ̃Z1 + λ̃κ̃1)

=E[L̄]
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